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Abstract

A major effort of systems biology is the building of accurate and detailed models of bi-
ological systems. Because biological models are large, complex, and highly nonlinear,
building accurate models requires large quantities of data and algorithms appropriate
to translate this data into a model of the underlying system. This thesis describes
the development and application of several algorithms for simulation, quantification
of uncertainty, and optimal experimental design for reducing uncertainty. We ap-
plied a previously described algorithm for choosing optimal experiments for reducing
parameter uncertainty as estimated by the Fisher information matrix. We found,
using a computational scenario where the true parameters were unknown, that the
parameters of the model could be recovered from noisy data in a small number of
experiments if the experiments were chosen well. We developed a method for quickly
and accurately approximating the probability distribution over a set of topologies
given a particular data set. The method was based on a linearization applied at the
maximum a posteriori parameters. This method was found to be about as fast as
existing heuristics but much closer to the true probability distribution as computed
by an expensive Monte Carlo routine. We developed a method for optimal experi-
mental design to reduce topology uncertainty based on the linear method for topology
probability. This method was a Monte Carlo method that used the linear method to
quickly evaluate the topology uncertainty that would result from possible data sets
of each candidate experiment. We applied the method to a model of ErbB signaling.
Finally, we developed a method for reducing the size of models defined as rule-based
models. Unlike existing methods, this method handles compartments of models and
allows for cycles between monomers. The methods developed here generally improve
the detail at which models can be built, as well as quantify how well they have been
built and suggest experiments to build them even better.

Thesis Supervisor: Bruce Tidor
Title: Professor of Biological Engineering and Computer Science
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Chapter 1

Introduction

Upon the publication of first draft of the human genome in the year 2000, the director
of the NIH Francis Collins remarked, “I would be willing to make a prediction that
within 10 years, we will have the potential of offering any of you the opportunity to
find out what particular genetic conditions you may be at increased risk for, based
upon the discovery of genes involved in common illnesses like diabetes, hypertension,
heart disease, and so on [1].” For the most important diseases fourteen years later,
their genetic basis remains incomplete with at most partial correlations between par-
ticular genes and disease outcome having been uncovered [2, 3, 4]. The enthusiasm
surrounding the human genome project was warranted given the knowledge of the
day. Some of the most destructive diseases in the West, heart disease, cancer, stroke,
Alzheimer’s disease, diabetes, and kidney disease [5], appeared and still appear to
originate not from external agents, such as bacteria and viruses, but from internal
pathological processes. As the genome is the program for making and maintaining
a human being, where else would we look for answers to those diseases except in
the genome? Of the inborn diseases whose genetic basis had been solved, each was
caused by a single mutated gene. Sickle-cell disease was found by Linus Pauling and
colleagues in 1949 to be caused by a mutation in the hemoglobin molecule [6]. The
first mutation that caused cystic fibrosis was discovered by Francis Collins and col-
leagues in 1988 [7]. Using technology ultimately used for the human genome project,

the U. S.—Venezuela Collaborative Research Project located the gene responsible for
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Huntingtin’s disease in 1993 [8]. With so many diseases remaining to be understood,
it was reasonable to just sequence the human genome, vacuuming up the remaining
unsolved diseases, rather than search for each one individually. It turned out that
many of the unsolved diseases were outside the paradigm of one gene, one protein,
one disease. The human body is an extraordinarily complex machine, and some of
the defects are born not from a single broken device, but from the miscooperation
of slightly misaligned parts. Thus, large swaths of biology and medicine cannot be
reduced to a single gene. These swaths, which seem to encompass almost all of human
biology, can only be understood as large networks of interacting components. Out of
these limitations arose systems biology, a study of biology not through the removal
and study of a single part but through the reassembly of many parts. Biological
systems can exhibit behavior that is more complex than can be easily predicted from
the behavior of the individual parts. Integrating the parts to discover the emergent
behavior requires at least mathematics and, for all but the simplest collection of parts,

a computer.

A computational model is one of the most important tools available in systems
biology. A computational model is a means to simulate the behavior of the system
under different conditions, assumptions, parameters, and other differences that may
be of interest to us. A running model allows scientists to study parts of the system
that are experimentally unobservable with current technology. The detail to which
a model can be trusted depends on how it was constructed. There are a number of
different frameworks in which to construct a model, each with its own advantages

and disadvantages [9].

At the most abstract level are the machine learning techniques. These methods
analyze a set of measurements and return a relationship between the parts. The
advantage of this technique is that few assumptions need to be made about the
data. It does not need to be a particular type of data or even the same type of
data. The disadvantage is that no mechanistic or causal relationships are determined,
only correlative ones. Because these methods are not constrained by mechanistic

assumptions, they typically use a simple and efficient framework, so that very large
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data sets can be examined with low computational cost. A famous example of a
method of this type in the biological sciences is hierarchical clustering [10], which
takes particular measurements under different conditions and clusters the behavior of
the measurements according to how similarly the measurements change in response
to the conditions. In terms of understanding the system, measurements that behave
similarly may measure components closely associated in the real system. In terms of
prediction, such models cannot predict the results of an experiment whose conditions
are dissimilar to conditions already studied. Other important methods at this abstract
level are principle component analysis [11] and partial-least squares [12], which extract
correlations between measured variables.

At the next level are non-mechanistic network models. These models have nodes,
representing species in the model, and edges between the nodes, representing causal
relationships between the nodes. The advantage of these modeling techniques is that,
by disregarding the mechanism of molecular interaction, they can use a mathematical
structure that is amenable to automatic construction from data. The disadvantage is
that disregarding the mechanism results in models that necessarily deviate from the
behavior of biological systems. Some well-known frameworks include Bayesian net-
works [13], Petri nets [14], and Boolean networks [15]. Some techniques can assemble
these models automatically from data in a computationally efficient way [16, 17, 18].

At the most detailed level are the mechanistic models. These models are built out
of chemical reactions between molecular species. The advantage is that there are few
assumptions required because, fundamentally, much of biology actually is networks

of chemical reactions.

1.0.1 Mechanistic Modeling

The reaction-diffusion master equation (RDME) is a general formula for describing
chemical reactions [19]. The RDME models a system as a collection of particles each
with a state and a position. The particles can be produced from nothing via a zeroth-
order reaction, which typically represents particles being introduced from outside the

conceptual boundary of the model, since nothing can truly be produced in this way.
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A single particle can transform into one or more particles via a first-order reaction,
and two particles can collide to form one or more particles. As a representation of

chemical kinetics, the RDME makes the following assumptions:
1. The state retains no memory of the past (Markov property)

2. The position changes over time according to molecular diffusion (Brownian mo-

tion)

Concerning the state, it would be more accurate to describe each particle with
numerous internal bond lengths and angles. Its propensity to react either alone or
in a collision with another particle is dependent on the state of those bonds. The
probability that a particle will or will not be internally configured to react in a
particular way is abstracted in the rate constant for that reaction. Once sufficient
time has passed since the particle was created for the internal configuration to reach
equilibrium, the probability of the particle being in a particular configuration remains
constant and the Markov property holds. We can justify making the assumption
broadly across biology by recognizing that the time it takes for atoms to move around
within a molecule is usually much shorter than the time it takes from molecules to
move around the cell. Whenever the assumption is not valid, additional states may
be added to the model to represent these metastable internal configurations.

Concerning diffusion, it is more accurate to describe the motion of the particles as
traveling in straight lines until they collide with another molecule. The approximation
of Brownian motion is appropriate as long as the distance that the molecules travel
between reactions is much greater than the distance they travel between collisions
[20]. Given that the cell is made mostly of water, which is largely a non-reactive
solvent for the purposes of biology, the simplifying assumption is well justified.

The reaction-diffusion master equation describes the evolution of the spatial prob-
ability distribution of each state over time. In general, solving the partial differen-
tial equation to obtain the probability distribution is impossible analytically and
intractable numerically. There are various spatial-stochastic algorithms to generate

a simulation of the system—one particular draw from the probability distribution
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[21, 22, 23]. The advantage of spatial stochastic algorithms is that few assumptions
need to be made. Each simulation tracks the movement and change in each particle
of the system. Needless to say, this can be very computationally expensive. Even
if there are many copies of each state, each particle must be tracked individually, it
must diffuse individually, and its propensity to react with each other particle must
be computed as well. Furthermore, because each simulation is stochastic, it is neces-
sary to run the simulation many times in order obtain a representative sample of the
system’s behavior.

One way to speed up the simulation is to make an assumption that allows for
lumping together particles with identical states. The assumption, which underlies

the use of partial differential equation modeling, is as follows:
3. Each state is a continuous density

This assumption is valid when the number of particles in each state is very large
such that the reaction of a single particle has a negligible impact on the local con-
centration of that state. The density can be evolved over time with a numeric partial
differential equation solver. With this assumption, the stochastic nature of the chem-
ical system has been averaged out. Simulation produces a deterministic result, which
obviates the need for running many simulations in order to obtain the average be-
havior. The caveat is that this assumption is not true for many biological systems.
Models that include DNA, for example, will have about two copies of each gene, which
is certainly not large enough to satisfy a continuous density assumption.

Disregarding the assumption made for partial differential equation modeling, a
different assumption can be made instead to arrive at non-spatial stochastic modeling,

which is as follows:
4. BEach state is well-mixed within the reaction volume

This assumption is valid if the time it takes for a reaction to occur is much longer
than the time it takes each state to spread throughout the reaction compartment.

Every particle of a particular state is the same no matter where it was produced.
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This allows the spatial part of the simulation to be removed entirely, keeping only
a count of the number of particles in each state. Simulation of this model can be
done using various stochastic simulation methods, the most famous of which is the
Gillespie algorithm [24]. As long as the number of particles is small, the simulation is
computationally inexpensive, but if the number of particles is large, then simulating
each molecule change one at a time will be very slow.

Combining both additional assumptions leads to the kinetic aspect of the law of
mass action, the primary modeling framework of this thesis. By assuming that the
system is both well-mixed and uses a large count of particles, it can be modeled using

ordinary differential equations (ODEs).

1.0.2 KroneckerBio Modeling Toolbox

There are many features of biological systems, such as compartments, outputs, and
higher-level approximations, that may or may not be supported in a specific modeling
framework. To assist me in completing the work described in this thesis, I developed
a software toolbox in Matlab called KroneckerBio, a project that began with Joshua
F. Apgar, Jared E. Toettcher, Jacob K. White, and Bruce Tidor. This toolbox is
free and open-source software. A model in KroneckerBio is composed of the following
components: compartments, states, inputs, parameters, seeds, reactions, and outputs.

Compartments map to cellular compartments like the cytoplasm, nucleus, cyto-
plasmic membrane, or DNA. They have a specific dimensionality, 3 for volumes, 2
for membranes, 1 for fibers, and 0 for points. The rates of bimolecular reactions,
being dependent on the frequency of collisions, are inversely proportional to the size
of the compartment in which the reaction takes place. If the reaction is between two
species in different compartment, such as a free ligand binding to a membrane-bound
receptor, then the compartment with the highest dimensionality is the compartment
for the reaction. The volume of the compartments is represented by v a vector of
length n,.

KroneckerBio uses the formalism that a reaction rate is the change in the amount

of the species, not the change in the concentration. When dealing with a reaction in a
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single compartment, using the concentration is somewhat simpler because the volume
of the compartment does not need to be considered, except indirectly through the
concentration. But when molecules can move between the compartments, conversion
factors need to be used when concentrations are tracked. For example, a molecule
moved from one compartment to another twice as small will increase the concentration
in the new compartment twice as much as it decreased the concentration in the old
compartment, even though the amount gained is equal to the amount lost. Computing

all rates and tracking all states as amounts allows the simulation to be simplified.

States are the main species of the model. Each state has a value that represents
the number of molecules of a particular type that exists. This value evolves over time
according to the simulation of the reactions of the model. Each state is confined to a
particular compartment, so that chemically identical states in different compartments
are tracked separately. The initial condition of the state may be a constant defined
in the model or a function of the seed parameters. The amount of the states as a

function of time are represented by z (t) a vector of length n,.

Inputs are also species of the model, but their amount as a function of time is
defined before the simulation and is not affected by the reactions, even if the inputs
are reactants or products of a reaction. Inputs are useful in representing species
that are at the boundary of the model—species whose behavior we already know
or can control. For the models used in this thesis that have inputs, most represent
external ligands whose conditions are under the control of the experimenter. For
any simulation in KroneckerBio, a flag determines whether the inputs are defined as
part of the model (the same for all experiments) or part of the experiment (may be
different for each experiment). The amount of the inputs are represented by u (¢, q)
a vector of length n, as an arbitrary function of time and input control parameters ¢
a vector of length n,.

Parameters are the rate parameters for the reactions. Each reaction names ex-
actly one kinetic parameter to use. Each reaction may also have a scaling factor
for its parameter, which is only useful when simulating rule-based models. The rate

parameters are represented by k a vector of length ny.
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Seeds are parameters that determine the initial amounts of states. Each state
is a linear combination of seed parameters, and states may share seed parameters.
For any simulation, a flag determines whether the seeds are defined as part of the
model or as part of the experiment. The initial amounts of the states are computed

according to the following formula:

d
x(O):x():%-s%—xc (1.1)

where s is a vector of length n, representing the seed values, % is a matrix n, by
n, representing the mapping of the seeds onto the states they influence, and x. is the

constant initial amount of the state.

Reactions determine how the states evolve over time. All reactions are assumed
to follow the well-established law of mass action [25]. Each reaction has at most two
reactants and usually at most two products. The rate of the reaction is equal to the
rate parameter times the amount of the first reactant times the amount of the second
reactant divided by the volume of the reaction compartment. Mass-action reactions

can be represented in a compact matrix notation:

r(t,z,u) = Di-x+ Dy (x® (z/vy)) + D3+ (u® (x/vy))
+Dy- (x® (u/vy)) + Ds - (u® (u/vy)) + Dg - u+d

(1.2)

where a ® b represents the Kronecker product of vectors a and b, and here a/b repre-
sents elementwise division of vector a by vector b. Matrices D; through Dg and vector
d (collectively called the D matrices) have a number of rows equal to the number of
reactions n, in the model and a number of columns appropriate to the number of
species or Kronecker product of species. These matrices are exceedingly sparse. For
each row across all the matrices there is exactly one non-zero entry; it is the rate
parameter for the reaction put into the correct column that represents the reactant

or reactants of that reaction.

The system of ODEs is generated by applying the stoichiometry matrix to the
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rate:

dx

Z':%:

ft,z,u)=95 r(t,z,u) (1.3)

where S is an integer matrix n, by n,, mapping how much each state, either reactant
or product, is changed by the reaction. Because S and the D matrices are constant
over the course of a simulation, we distribute S over the D matrices when constructing
the model. This results in the KroneckerBio formulation of mass-action models,
a compact and computationally efficient representation assuming that fast sparse

matrix multiplication and addition algorithms are available:

ftz,u) = Ao+ Ay (2@ (x/vg)) + Az - (u® (z/vy))

(1.4)
+As (2 ® (u/vy)) + As - (U ® (u/vy)) + As - uta

where matrices A; through Ag and vector a (collectively called the A matrices) map

the effect that each species or Kronecker product of species has on the state variables.

Outputs are a linear combination of the states and inputs and are the observables
of the model. They are a convenience for biological models which usually have many
complexes or aggregates of monomeric species. Most measurement techniques cannot
measure the amounts of all complexes in the system; they can only measure something
like the total amount of phosphorylation of a protein. There is no species in the model
that represents this observable because the phosphorylated protein is bound up in
many complexes, possibly in multiple copies in some complexes. Outputs provide
a way to define observable quantities without having to sift through the state data
externally after every simulation. It also allows for competing topologies with different
numbers of states to describe the same data. The outputs are computed via the
following formula:

yt)=Cr-x(t)+Cy-u(t)+c (1.5)

where C is a matrix n, by n, representing the contribution of each state to each
output, Cs is a matrix n, by n, representing the contribution of each input to each
output, and c is a vector of length n, representing the constant contribution to each

output. For most models, only the states contribute to the outputs.
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1.0.3 Statistical Modeling

We can conceptually separate the model into two main components: the topology and
the parameters. The topology is the structure of the model—here it is the equations
underlying f (¢, z,u, k). For a mechanistic model, the topology is the set of chemical
reactions/interactions that occur. The parameters are values within the topology
that can be varied to produce different simulations—here it is k, s, and ¢q. Both
the topology and the parameters can have uncertainty. Topology uncertainty would
question whether or not a particular reaction takes place, while parameter uncertainty

would question how fast that reaction takes place.

For a given problem, not all the kinetic parameters and seed parameters need to
be free, unknown parameters of the model. Some parameters of the model may be
known, with the rest being variable. In this thesis, the variable kinetic parameters
Ok, the variable seed parameters 0, and the variable input control parameters 6,will
be concatenated into a single vector 8 of length ny and be simply referred to as “the

parameters”.

When gathering data on a system, some measurements are more likely to be
observed under one model than another. Because of this, data provides evidence in
favor of some models at the expense of others. The likelihood pgjm g (9, m,0) is the
quantification of the probability that measurements ¢ will be observed if the true
model consists of topology m and parameters 6. The likelihood function is specific to

a set of experimental conditions and measurement scheme.

In a Bayesian framework, the probability distribution of the parameters given the
data is described by the parameter posterior, which is proportional to the product of

the likelihood and parameter prior:

_ Djle,m (@7 97 m) * Poim (97 m)

pB\Q,m (07g7m) (16)

where pg),,, (0, m) is the prior for the parameters ¢ in topology m and pyp, (7, m) is
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the marginal likelihood defined by:

Similarly, the probability distribution of the topologies given the data is given by the
topology posterior, which is proportional to the product of the marginal likelihood

and the topology prior:

Dol (0, ) = ). By (3.10)
T S i (1) - g (3,1)

(1.8)

where p,, (m) is the prior for the topologies.

For all but the simplest biological models, the posterior distributions of the pa-
rameters and topologies do not have analytical solutions. They can only be computed
with Monte Carlo methods—in particular, methods like the Metropolis-Hastings al-
gorithm to sample the nonlinear parameter space [26, 27]. Because the number of
parameters in a biological model can be very large, the volume of parameter space
that needs to be sampled grows exponentially, making it computationally expensive
to accurately evaluate the parameter or topology probability. This is particularly
problematic when it is not just the one probability distribution for the current data
that is desired but when the probability calculation is a subproblem in a larger prob-
lem, such as estimating the probability distribution for each experiment in a large
set of candidate experiments in order to evaluate which ones are likely to be best at

reducing the uncertainty.

If fast but accurate approximations can be developed, then the high cost of the
Monte Carlo methods can be circumvented. The main theme of this thesis is the
development and use of approximations to arrive at a good estimate faster than a
Monte Carlo method for the purpose of optimal experimental design. In particular,
we found that a linear approximation of the model, and the analytical solution it
allowed, was an excellent approximation for several important problems in systems

biology.
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1.0.4 Project Summaries

In Chapter 2, we use the Fisher information matrix, a well-established linear approx-
imation, to predict what the parameter uncertainty would be after performing an
experiment from a large set of candidate experiments. We synthetically perform the
best experiment according to the expected Fisher information matrix by simulating
a “true” model and generating noisy data. We found that the approximation is effec-
tive for selecting experiments that reduced parameter uncertainty, which also reduced
parameter error of the best-fit parameters compared to the “true” parameters, and
reduced prediction error of the best-fit model compared to the behavior of the “true”

model. This method was demonstrated using a model of the EGF-NGF pathway.

In Chapter 3, we develop a method using linearization to compute the topology
probability. This is a new method in system biology, which solves a problem that is
uniquely difficult to solve with a Monte Carlo method. This chapter also introduces
a new Monte Carlo method, which was necessary to act as a gold standard to which
to compare the performance of the linearization method. The computational cost
of linearization was similar to the cost of several popular heuristics, but produced a
probability distribution much closer to the gold standard. The method was tested on
a set of four topologies of the one-step MAPK cascade.

In Chapter 4, we use the linearization method to develop an algorithm for evaluat-
ing experiments’ ability to reduce topology uncertainty. The linearization method is a
subfunction of the algorithm. This optimal experimental design algorithm generates
random potential data sets from each candidate experiment and uses the linearization
method to evaluate how much the topology uncertainty was reduced by the synthetic

data. The method was tested on a mass-action model of ErbB signaling.

In Chapter 5, we develop a different type of algorithm, not based on uncertainty
or optimal experimental design, but one to improve the speed of simulating rule-based
models. If some proteins in the model have many modification sites, then there are an
exponentially large number of possible species of that protein. However, if the sites

behave independently and are measured independently, then it is possible to simulate
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the system using fewer states than the number of species. Existing methods for this
problem do not take into account the importance of compartments in biology nor the
problem of proteins being able to form a cycle. Our method introduces compartments
and allows for proteins to form cycles. The method was used to construct a model
of the ErbB pathway, with a level of detail at the top of the pathway that would be

impossible using conventional model building techniques.
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Chapter 2

Convergence in Parameters and
Predictions using Optimal

Experimental Design

2.1 Introduction

A goal of systems biology is to construct models that incorporate known mechanisms
and reflect existing data under laboratory conditions. The notion is that mechanistic
mathematical models not only recapitulate existing measurements but can ultimately
predict the behavior of modeled systems under novel conditions not previously tested
and be the basis of design work as is done in more mature fields of engineering
28, 29, 30, 31, 32, 33]. In addition, high-quality, mechanistically accurate models can
also lead to novel insights into systems operations. Biological systems are sufficiently
complex that mechanistic models will contain large numbers of parameters and thus
will require correspondingly large quantities of data for training. Recent and future
advances in the development of high-throughput measurement techniques (e.g., mass
spectrometry [34] and flow cytometry [35]) continue to increase the quantity and
quality of data collected, and bring nearer the promise of meeting the needs of true

mechanistic understanding of biological complexity, as reflected in the ability to de-
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termine the topology and parameters of corresponding models. Important research
areas include the development of experimental design strategies to efficiently deploy
experiments to probe new aspects of their operation, computational framing of the
space of relevant models, and probabilistic treatments of model uncertainty. Here we

focus on the first of these areas.

Recent work by Gutenkunst et al. [36] has suggested that it is difficult, if not
impossible, to accurately estimate the parameters of a typical biological model, re-
gardless of how accurately the data is collected, how many species of the model are
simultaneously measured, or how finely the species are measured in time. It was found
that, for typical biological models under typical experimental conditions, there were
some directions in parameter space that had so little effect on the measured quan-
tities that the resulting uncertainty in many of the parameters was too vast to be
overcome by higher quality measurements. In later work by Apgar et al. [37, 38, 39],
however, our group showed that the seemingly vast parameter uncertainty could be
dramatically reduced with a relatively small number of carefully selected perturbation
experiments. We demonstrated that sets of experiments could be found that together
exercised the epidermal growth factor (EGF) and nerve growth factor (NGF) path-
ways in sufficiently complementary ways so as to allow all parameters to be determined
within 10% uncertainty. This proof-of-concept study highlighted a potential role for
computational design of experimental conditions to efficiently reduce parameter un-

certainty.

Our previous work effectively demonstrated the existence in principle of a sequence
of experiments that progressively reduce parameter uncertainty to manageable lev-
els; it did not, however, investigate whether the sequence of experiments might be
discoverable in a practical setting. In an effort to address the challenge of parameter
error reduction issued by Gutenkunst et al. [36], most aspects of our study paralleled
theirs, and these choices precluded drawing conclusions regarding the practicality of
parameter error reduction through our scheme. These limitations included (1) the ac-
tual model parameters were known and used at each stage of the experimental design

progression to select the next experiment in the sequence, but in any real applica-
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Figure 2-1: Nonlinearity. (A) In a linear model, the Fisher information matrix
exactly describes the likelihood of the parameter sets in the neighborhood of the
most likely parameters. This likelihood is a Gaussian, which has contours that are
ellipsoids in parameter space. (B) The likelihood of the parameters of biological
models is not exactly Gaussian. For two parameters of the EGF-NGF model fit to
a nominal experiment, it can be seen that the true contour for the likelihood of the
association and dissociation parameters (green line) are only approximated by the
linearization (orange line). All contours in both plots represent parameter sets of
equal likelihood.

tion the actual model parameters would be unknown; (2) the data measurements in
each experiment provided the average information that could be obtained from any
species at any time, but in practical situations each data point provides information
from a single species at a discrete time; and (3) the model was assumed linear in the
sense that the Fisher information matrix was assumed to accurately represent the
parameter uncertainty, whereas in practice the Fisher information matrix is just the
first (linear) term in an expansion of that error (Figure 2-1). This work addresses the
practicality of setting up and solving as an optimization problem the task of selecting
experiments to progressively reduce parameter uncertainty in biological models by re-
moving these limitations and seeking convergence to the true, unknown parameters.
In particular, the performance of the approach could degrade significantly because
best-fit parameters with their inherent errors, rather than perfect parameters, are
used in the experimental design phase. A major result of the work presented here is

that fit parameters do, indeed, perform well in this role.
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For comparison to previous work from our group and that of Sethna, we carried
out this study with the same model of the EGF and NGF receptor kinase cascades,
which are an important pair of interlaced signaling networks in mammalian cells
[40]. The EGF receptor pathway, in particular, has become one of the best-studied
signaling pathways in biology [41, 42, 43, 44]. Constitutive activation of this pathway
is associated with cancers of the breast, bladder, cervix, kidney, ovary, lung, and
other tissues. Despite nearly half a century of investigation, much remains unknown
about this pathway [45, 46]. A number of models has been developed, differing in
the species included, the connections among them, and the data with which they
were parameterized. The diversity of the available models of this system reflects the
underlying uncertainty concerning the true nature of these pathways, in terms of both
topology and parameters [40, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. The
EGF-NGF model used in the current work is an ordinary differential equation (ODE)
model developed by Brown et al. in which the enzymatic reactions of the network
are modeled with Michaelis-Menten kinetics [40].

We used synthetic data sets generated according to the published model and
showed that the uncertainty in all 48 parameters can be effectively reduced below
10% using the discrete data generated from a small set of complementary experiments
chosen according to a greedy optimization algorithm. The parameters estimated
by fitting to the data of these chosen experiments converged to their true values
with a residual error consistent with 10% uncertainty. Furthermore, the error in the
predictions made according to these parameters was consistent with 10% parameter

uncertainty.

2.2 Methods

2.2.1 Scenario Overview

In our scenario, we treated the published model as the true system. To perform a

synthetic experiment, this model was simulated according to the defined experimental
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conditions, and noisy data were generated according to the measurement scheme of
that experiment by adding Gaussian random noise corresponding to 10% measure-
ment error.

A nominal experiment was performed and a starting model was fit to the re-
sulting data. A nominal Fisher information matrix was computed. Using the fitted
model, the expected information matrices for a large set of candidate experiments
were computed. The nominal information matrix was added to each of the expected
information matrices to predict the combined information matrix after doing each
of the candidate experiments. The utility of each sum was quantified using a goal
function, and the highest-ranked experiment was selected.

The selected experiment was performed using the true model to generate noisy
measurements in accordance with the experiment’s design. The model was fit to the
union of the nominal data set and the new data set from the best experiment. This
fitting returned a new parameter set from which the expected information matrices
were recomputed and the subsequent best experiment was selected. This procedure
of computing, selecting, performing, and fitting was repeated iteratively until all the

parameter directions had uncertainties below 10%.

2.2.2 The Model

The model describes signaling from the EGF and NGF receptors in rat PC12 cells
and was developed by Brown et al. [40]. It has 32 species and 48 parameters for 24
reactions in 2 compartments. We obtained a version encoded in the Systems Biology
Markup Language (SBML) from the BioModels Database [60]. The model includes
two extracellular species, EGF and NGF, which each bind to the corresponding re-
ceptor to form two complexes. The remaining species are divided between 11 enzymes
than can exist as either an active or inactive species and four enzymes that are consti-
tutively active. The parameters are divided into three classes: (1) four rate constants
for ligand-receptor association and dissociation, (2) 22 k. values, and (2) 22 K,
values of the Michaelis—Menten enzymatic reactions. The species, reactions, and rate

parameters were retained from the original model. An illustration of the model topol-
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Figure 2-2: Illustration of EGF-NGF model topology. Each node (except EGF
and NGF) exists in an active and inactive species. Black arrows indicate Michaelis-
Menten reactions that activate the target node, while red arrows inactivate. EGF and
NGF, are exceptions, and bind in a mass-action fashion to their respective receptors
to form an active complex.

ogy is provided in Figure 2-2 and a list of parameters and their values is available in
Table A.1. The extracellular compartment was given a volume of 1000 times that of
the intracellular compartment to reflect the modification made by Apgar et al. [37].
The starting model had the topology of the true model, but each parameter was set

to the geometric mean of the class of parameters to which it belonged.

2.2.3 The Experiments

We defined a battery of candidate experiments that served as a collection of different
conditions and perturbations to the system, a selection of which could potentially
drive a 